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Thin polycrystalline metallic-film 
conductivity under the assumption of 
isotropic grain-boundary scattering 
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The polycrystalline thin-film resistivity and its temperature coefficient of resistivity are 
calculated from the assumption of isotropic grain-boundary scattering. The proposed 
simple analytical equations allow separate determination of the transmission coefficient 
of the grain boundary and the specular reflection coefficient at external surfaces. Good 
agreement with experiment is found. 

1. In t roduc t ion  
Several attempts have been made recently [1-12] 
to give a physical description of electrical conduc- 
tivity in thin metal films. Mayadas and Shatzkes 
[3] used the theory of quantum mechanics to find 
a theoretical expression for the film resistivity due 
to grain boundaries; the size effect in the total film 
conductivity (including bulk, grain-boundary and 
external surface scatterings) was expressed [3] in 
the way previously proposed by Sondheimer [13] 
for the description of external surface scattering. 
Since the proposed equations were mathematically 
complicated and difficult to implement, linearized 
forms have been studied [14-22] with limited 
validity ranges. 

In the case of annealed films Cottey's analysis 
[1] for external surface scattering is a convenient 
tool and gives less sophisticated expressions for the 
conductivity [9]. The definition of an effective 
mean free path [7] also allows simple analytical 
calculations of the conductivity. Moreover, in a 
large number of cases, the equations of Mayadas 
and Shatzkes could reduce [6] to Fuchs- 
Sondheimer equations which are easily mani- 
pulated [2]. All these simplified models are con- 
venient tools to describe the film conductivity [6, 
7, 21], its temperature coefficient [6, 7] and the 
strain coefficients [22, 23]. 

Nevertheless, in the model of Mayadas and 
Shatzkes the "grain-boundary reflection coeffi- 

cient" R is defined from a mathematical equation 
(Equation 6c, in [3]) which is not clearly related to 
the physical phenomenon of reflection on grain 
boundaries; moreover, experiments related to 
annealed, sputtered films gave high values of R 
[20] which could not easily be interpreted since 
the contribution of grain-boundary scattering to 
resistivity is not more than four times that of the 
bulk scattering [20]. 

In order to obtain a better representation of the 
physical phenomena, several statistical models 
have been proposed [7, 10, 11, 12] which differ 
from the usual geometrical array of grain bounda- 
ries by using cylindrical [10, 24], one-dimensional 
[7, 11] or three-dimensional [12] arrays. Compa- 
risons with experiment have shown [25] that the 
three-dimensional model gives a good fit. 

The theoretical equations for the conductivity 
and its temperature coefficient of resistivity (tcr) 
were easy to use in determining the electrical 
parameters [25, 26] and could be approximated 
by linear laws with extended validity ranges [25]. 
New theoretical expressions for the Hall coeffi- 
cient [26] in infinitely thick films are similar to 
those derived [27] from the Fuchs-Sondheimer 
conduction model [2]; this suggests that the 
linearized expression for the conductivity could 
be interpreted in terms of an isotropic additional 
resistivity due to grain-boundary scattering. 

This paper examines theoretical expressions for 
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electronic transport derived from the assumption 
of an isotropic grain boundary mean free path. 

2. Theoretical equations 
2.1. Expressions for the mean free path 
In spherical co-ordinates (r, 0, $) the total elec- 
tronic mean free path l due to the three types of  
electronic scattering may be written as [12] 

1-1 = lg I + li -1 + l ; ' ,  (1) 

where lo is the bulk mean free path and l i and l e 

are related to the grain boundary and the external 
surface scattering, respectively; they are defined 
by [11, 12] 

l ( '  = D- '  In (1/t)A (2) 

and 

l ;  1 = d -1 ln(1/p)lcosOI, (3) 

where D is the average grain diameter, t is the stat- 
istically transmission coefficient of any scattering 
barrier [11, 24], A is the coefficient of the iso- 
tropic grain boundary, d is the film thickness and 
p is the usual [2, 13] electronic specular reflection 
coefficient at external surfaces. 

Introducing Equations 2 and 3 into Equation 1 
gives 

1-1 = lff ~ [1 +AD-1lo In (I/t) + d-llo In (l/p) 

x Icos 011. (4) 

2.2. Theoretical expressions for 
conductivity and tcr 

The conductivity of an infinitely thick film, i.e. 
the grain boundary conductivity eg, may then be 
derived from the bulk conductivity (io by sub- 
stituting lo111 + AD-Xlo in (l/t)] for lo 1 in the 
well-known expression for the conductivity [2, 
13 ] giving 

(ig = (io[1 +AD-~lo in (1/0] -1. (5) 

Similarly the resistivity ratio, PJPo, is given by 

Pg/Po = 1 +AD- ' t  o in (l/t). (6) 

Assuming that the thermal linear expansion in D 
and t is negligible with respect to that of  the mean 
free path, the ratio of the grain boundary tcr, 13g, 
to the bulk tcr, Do, is calculated by differentiating 
Equation 6. This yields 

PgDg = Po/3o, (7) 

since Polo is independent of temperature [2]. 

Hence 
/3g/D0 = [1 + AD-1lo In (1/0] -1. (8) 

With the aid of Cottey's procedure [9], the total 
film conductivity (iF is given by 

OF/(I 0 ~- 

3 sin30 
~- f dO. 

~ 

This gives: 
3 

(lF/g 0 = ~'~ [~J - -  �89 + (1 -- $2) In (1 + $-1)] 

with (9) 
= [1 +AD-~loln(1/t)]b -~, (10) 

where 
b = d-'lo in (l/p). ( l l )  

For convenience Equation 9 may be written in the 
form 

1 
(iF/(io = ~ c(6) ,  (12) 

where 

C(~) = ~r [ ~ - - � 8 9  - -~2) In(1  + r  

(13) 
is Cottey's function [1 ]. 

Logarithmic differentiation of  Equation 13 
gives [9] 

- 3 r  +Do = - ( b r  -1 d ( b , )  + D (~) d 
dT C($ )  SdT '  (14) 

where 
dC(~) 

D (~) = ~ - -  
d e  

= ~ [ 3 r  + ( 1 -  3 , ; ) l n  (1 + r 

and (15) 

d(b~) AD-llo In ( l / t )  d/o 
b6dT - l +AD- l lo ln (1 / t )  lodT (16) 

(from Equation 10), and 

d~ _ AD-1loln(1/t) d/o d/o (17) 
t)dT 1 +AD-llo In (l/ t)  lodT lodT 

(from Equation 11). 
Introducing Equations 16 and 17 into Equation 

14 and re-ordering gives 

30 (1 -- D($)IC(~)/[1 +AD-1lo In ( l / t ) ]  -1. (18) Dr 

Equations 9 and 18 can be transformed by intro- 
ducing Equation 5 and 8, respectively: 

oF/% = C(~)  (19) 
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Figure 1 Geometrical model for electronic scattering in 
polycrystaUine thin films. 

and 

~F --- ~ 1 c (~ )J  

It may be noted that the effective mean free path 
conduction model [7] leads to approximate 
equations for the film resistivity and its tcr which 
are similar to Equations 19 and 20 ([9], Equations 
338 and 33b). 

f 

3. Discussion 
3.1. Coefficient of isotropic grain-boundary 

scattering 
The value of the coefficient of isotropic grain- 
boundary scattering A (Equation 2) may be cal- 
culated from the general expression for the grain- 
boundary mean free path calculated in polar 
co-ordinates (Equation 9 in [12]) (r, 0, ~) starting 
from the framework of a three-dimensional 
conduction model [12] in which 

li -1 = D -1 In ( l / t )  [[cos qS[ [sin 0[ 

+ Isin 91 [sin OI + [cos OI] (21) 
(Fig. 1). 

An approximate value for A can be calculated 
by assuming that the moduli of the sine and cosine 
terms do not markedly deviate from the average 
value, i.e. 

Icos~l = Isinr = Isin0l = Icos0l ~ 2/rr. 

This gives (22) 

Since 

comparing Equations 2 and 23 gives 

A ~ 1.45. (24) 
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3.2. Comparison with the usual model of 
Mayadas and Shatzkes [3] 

A comparison can now be made with the theore- 
tical expressions for the conductivity [3] and tcr 
[18] of polycrystalline films derived from the 
Mayadas-Shatzkes model (MS model) [3]. For an 
easy comparison with numerical data the para- 
meter ~ is rewritten in the form 

= [1 +AloD- '  In (1/t)l[in (lip)]-'clio'.  

(25) 

Introducing the notation of Mayadas and Shatzkes 
[3] 

k = dlo ~ (26) 
and 

a = loD- tR(1 - -R)  -1, (27) 

where R is the so-called "grain-boundary reflec- 
tion coefficient", and identifying Equation 5 with 
the linear asymptotic form ([3], Equation 11 )o f  
the grain-boundary resistivity in the MS model, 
gives the relation 

1.5R(1 - -R)  -t = A in (l/t) .  (28) 

Equation 25 then gives 

= (1 + 1.5a)[ln(1/p)]-'k. (29) 

Equation 29 allows the calculation of ~ for a 
given set of values of a and k; numerical data from 
the MS model are thus reported on the theoretical 
curves in Figs 2 and 3 corresponding to Equations 
19 and 20 for p = 0.75, 0.5 and 0.25 and a --- 0.5, 
1 and 2. A deviation of less than 5% is obtained for 

PF/Pg ~ll 

1.5 \~/~I 

, , , , , , , ,  

0.1 1 10 100 q~ 
Figure 2 Variation of reduced resistivity oF/fig with the 
conduction parameter ~. Full line: theoretical curve from 
Equation 19 (this cannot be separated from MS curve for 
p/> 0.75); broken lines: MS curves; A, p = 0.5; B, p = 
0.25; 2x: approximate curve (Equation 36). 



Pg/Pr 

1.5 

1 
o.~ 

I H H H l q  I I I I I I I 1 M  
1 10 

Figure 3 Variation of reciprocal reduced tc r  (3F//3g) -1 
with the conduction parameter q~. Full line: theoretical 
curve (Equation 20);., approximate curve (Equation 37). 

0.5 <~ p and 0.2 ~< 0; a deviation of less than 10% is 
obtained for 0.25 ~<p and t <~ ~. 

3.3. L im i t ing  forms of  the theoret ica l  
equat ions 

When no grain-boundary scattering occurs, i.e. for 
t = 1 (v-+ oo), 0 reduces to k[ln (l/p)] - a= /a  and 
Equation 9 becomes 

~F/ao  = ~U [U --  2'- + (1 --  U ~) In (1 + U - ~ ) ] ,  
(30) 

which is Cottey's relation [1]. Equation 18 
becomes 

[3F/[3o = 1 -- D (#____) (31) 
c(u) ' 

which is the general expression previously 

obtained [9]. 
When 0 becomes infinite, e.g. when the film 

becomes infinitely thick, the approximate forms 
of C (0)  [9] and O (0) are: 

3 
C (~ )  ~ 1 - - - -  (32) 

8 0  
and 

3 
D (0)  ~ - - .  (33) 8~ 

Hence, from Equations 19 and 20 

3 
(aF/ag)a-+= ~ 1 --8-~,. (34) 

and 3 

~F/h)~-~- ~ 1--8- ~ (35) 

whose alternative forms are 
3 

Pv/Pg ~-" 1 +  8---~ ' (36) 

where p is the resistivity, and 
3 

3g/3F ~" 1 +  8---~ " (37) 

Deviations of less than 3.2% and 6.6% are obtained 
for 0 > 1 with Equations 36 and 37, respectively. 

3.4. Compar i son  with e x p e r i m e n t  
It has been recently shown [25] that the variations 
in resistivity and tcr of thin radio-frequency (r.f.) 
sputtered A1 and Zn films can be described by the 
following equations 

dPF = dpg + G (38) 
and 

d3~ 1 = d/3~ a + C2 (39) 
with 

Ca -~ C~. (40) 

These empirical equations agree with Equations 
36 and 37 since introducing Equation 25 gives the 
same asymptotic form for the reduced resistivity 
and tcr. 

PF/Pg = 3g/3F ~ 1 +~[1 + 1.4510 D-1 

X In (1 / t ) ] - '  In ( l /p)  lo d-1.  (41) 

When taking into account Equation 5, Equation 4 
may be rewritten in the forms 

dPF ~ dpg + ~polo In (I/p) (42) 
and 

d~f  a ~. d ~  1 + ~pola tn (l /p).  (43) 

Equations 42 and 43 give a theoretical basis for 
the validity of Equation 40. Moreover they show 
that 

Pr'3~" ~ Pg3g. 

Hence, from Equation 7 

Ov~v "~ Po3o 

T A B L E I Electrical parameters for r.f. sputtered films 

R.f. sputtered D 0o 3o l0 
films (nm) (tas2 era) (10 -3 K -* ) (nm) 

Og 3g p t t 
(#a cm) (10 -3 K -1) (from (from 

Equation 6) Equation 8) 

A1 11.4 2.65 4.29 31 10.4 1.t 0.595 0.476 0.478 
Zn 15.0 5.916 4.19 12 12.2 1.923 0.597 0.4 0.362 
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TABLE II Values of p and t from resistivity measure- 
ments 

p t 

A1 films ~ 0.6 0.49 
Zn films ~- 0.7 0.42 

is in good agreement with relations derived [21] 

from Matthiessen's rule. 
The values of the coefficient t (Table I) are 

determined from the resistivity and tcr ratios 

according to Equations 6 and 8 by  introducing the 

usual values [2] of the bulk mean free path l0 and 

resistivity Po and the values of the mean grain 

diameter D which have been previously deter- 

mined [12]. The values of pg(/3~ 1) are measured 

from the linear plots [25] of dpv(d/3~ 1) against 

d (Equations 42 and 43); the values o f p  (Table I) 
are deduced from the following equation: 

PF ~ Pg + ~polo in (1/p)d, (44) 

which is derived from Equation 42. 
A similar equation related to tcr can be de- 

rived from Equation 43 but  the experimental in- 

accuracies [25] in measurements of pg are more 
important  than those in measurements ofp and this 
relation is not retained. For the same reason it is 

better to use Equation 6 than Equation 8 for 

calculating t. 
The calculated values of p and t are in agree- 

ment with those previously obtained (Table II) by 
a more sophisticated procedure [25] from the 

framework of three arrays of scatter [ 12]. 
Moreover it must be noted that the proposed 

equations allow separate determinations of p and 

t whereas the sophisticated procedure requires the 
best fit to be found when p and t act as para- 
meters. The choice is not  always clear: for instance, 

it has been shown [25] that the value of  p in Zn 
films derived from tcr measurements lies between 

0.5 and 0.8. 

4. Conclusion 
The assumption of isotropic grain-boundary 

scattering seems an adequate tool for representing 
the variations in polycrystalline film resistivity and 

tcr with film thickness and mean grain diameter. 
Separate determinations of grain-boundary trans- 

mission coefficient and specular reflection 

coefficient are easily performed. 
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